Field of Science

Another Example of the Phylogenetic Utility of Osteoderms in Triassic Vertebrates

Buchwitz, M., C. Foth, I. Kogan, and S. Voigt. 2012. On the use of osteoderm features in a phylogenetic approach on the internal relationships of the Chroniosuchia (Tetrapoda: Reptiliomorpha). Palaeontology [Early View]. DOI: 10.1111/j.1475-4983.2012.01137.x

Abstract:  Chroniosuchians are an enigmatic Permian to Triassic group of crocodile-like basal tetrapods. Their conspicuous dorsal osteoderm systems include most of the group’s yet documented postcranial morphological variability but have hardly been considered in cladistic approaches. Aiming at the clarification of the internal relationships of the Chroniosuchia, we have carried out a parsimony analysis including, among others, 23 morphological and osteohistological osteoderm characters and 12 chroniosuchian taxa. According to the most parsimonious trees, taxa usually referred to Chroniosuchidae form a paraphyletic succession with Madygenerpeton pustulatus and Chroniosaurus dongusensis as the basalmost chroniosuchians and Uralerpeton tverdochlebovae as the sister group of Bystrowianidae (hypothesis A). However, the concurrent hypothesis of a basal split into monophyletic subtaxa Chroniosuchidae and Bystrowianidae (hypothesis B) is only slightly less parsimonious and supported by an alternative analysis which includes embolomeres as the only reptiliomorph outgroup. Searching for the better hypothesis, we compare the respective order of branching to the order of first occurrences in the fossil record, demonstrating that hypothesis A provides a better stratigraphic fit than hypothesis B. Accordingly, the last common ancestor of the yet known chroniosuchians had a series of broad complexly interlocking ‘chroniosuchid’ osteoderms that served as a protection carapace apart from supporting the trunk during terrestrial locomotion. The later evolution of chroniosuchian carapaces was marked by a stepwise increase in flexibility and size reduction, which resulted in a loss of protective function and in a reduction in trunk support function. The flexibility increase is paralleled by the evolution of the Crocodylomorpha whose extant members do not possess as extensively interlocking osteoderm systems as some of their Mesozoic relatives.

In addition you can read about more new articles on Kyrgyzsaurus and Longisquama here.

No comments:

Post a Comment

Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS