Palaeontology Online: Fossil Focus: Placodonts

This link is to a new article at Palaeontology Online providing an overview of Triassic marine placodonts. Palaeontology Online is a website sponsored by the Palaeontological Association (who publish the journal Palaeontology) featuring regular articles written by subject experts on all aspects of paleontology.

Return to the Down's Quarry

The Placerias Quarry outside of St. Johns, Arizona is one of the best known vertebrate fossil localities in the Chinle Formation. The nearby Downs Quarry is not as well known.  Named for the late Will Downs who worked in the area in the 1970s with the Museum of Arizona, the Downs Quarry is just a stones throw from the Placerias Quarry and possibly slightly higher stratigraphically.  Crews from the North Carolina State Museum and Appalachian State University have been working these two sites for five years now and are uncovering a lot of good material.  This is exciting as these quarries have produced a lot of incredible material in the past and seem to still be very productive.  Vince Schneider from the NCSM has a blog posted describing some of the work at the Downs Quarry, which you can read here.

Antarctosuchus polyodon, a new Temnospondyl from the Middle Triassic of Antarctica and Evidence for the Provincialization of the Temnospondyl Assemblages of Gondwana

I've always been interested in the Triassic rocks of Antarctica since as a work-study student at the Museum of Northern Arizona in the 1990s, I was tasked with returning a loan back to the American Museum of Natural History. Turns out it was Edwin Colbert's collection of material from Antarctica.  I was spellbound handling and packing away leaves of Glossopteris and specimens of Thrinaxodon and Dicynodon. These were specimens I had read about when I was younger that helped nail down the theory of plate tectonics, and here I was handling them and packing them for shipment (I hope they made it OK). In graduate school in the late 1990s we were tasked with writing a mock NSF proposal.  Mine dealt with collecting fossils in the Transantarctic Mountains and I'm happy to say it was the only one 'funded' by the professor, but of course I did not really get to go. As a result I'm always envious when  I read about Antarctic work.

This is a paper in the new issue of the Journal of Vertebrate Paleontology describing a new temnospondyl from the Middle Triassic of Antarctica.  This new taxon, Antarctosuchus polyodon, is based on a well preserved skull and a reconstruction is provided below courtesy of Christian Sidor.


This new taxon and its phylogenetic relationships suggests that the Gonwanan temnospondyl faunal assemblages were more provincial than the synapsid assemblages.

Sidor, C. A., Steyer, J. S., and W. R. Hammer. 2014. A new capitosaurid temnospondyl from the Middle Triassic Upper Fremouw Formation of Antarctica. Journal of Vertebrate Paleontology 34(3):539-548. DOI:10.1080/02724634.2013.808205

Abstract - We describe a new capitosauroid temnospondyl, Antarctosuchus polyodon, gen. et sp. nov., on the basis of a large and relatively complete skull from the upper Fremouw Formation of Antarctica. The new species is characterized by its possession of numerous, extremely small maxillary, palatine, and ectopterygoid teeth, a dental pattern that suggests specialization on small prey items, possibly invertebrates. The taxon is also characterized by a parachoanal tooth row that extends far posterior to the choana and occipital condyles set close to the midline. A combination of features, including a flat skull and low occiput together with well-developed sensory canals, suggests an aquatic lifestyle. We address the phylogenetic relationships of Antarctosuchus by adding it to a recent cladistic analysis of Capitosauria. The revised data set includes 27 taxa and 53 characters. The results of this analysis place Antarctosuchus within a clade of derived Triassic stereospondyls as the sister taxon to Paracyclotosaurus crookshanki from the Triassic Denwai Formation of India. To date, the upper Fremouw Formation has yielded two endemic temnospondyl species (viz., Kryostega collinsoni and Antarctosuchus polyodon), although indeterminate remains referred to benthosuchids and a cranial fragment assigned to Parotosuchus sp. have also been noted. In contrast to the broadly distributed therapsid taxa recognized from the Middle Triassic of Antarctica (e.g., Cynognathus, Diademodon), the temnospondyl fauna suggests more limited interchange with other coeval southern Pangean basins (e.g., Karoo, Luangwa, Ruhuhu, Waterberg).


New Article on the Colorado Plateau Coring Project

I apologize for the hiatus since the last set of posts but I was very busy finishing up my scholastic career, as well as maintain my full-time job, and we as my private life with home and family.  I hope to start posting regularly again and possibly even something more than just new paper updates, but we shall see.

This is an article that came out this week on the Colorado Plateau Coring Project work that was completed earlier at Petrified Forest National Park and what we hope to learn from this core.  The core is presently being CT scanned at the UT Austin and after that is will be split and the detailed research started.

https://www.ldeo.columbia.edu/news-events/amid-fossil-bonanza-drilling-deep-pre-dinosaurian-rocks

This summer we will continue work on the layer briefly mentioned in the article and video. An extremely fossiliferous layer we affectionately call the 'poop layer' because it is not only chock full of bones (micro- and macro-) but also a predominance of coprolites.  I'll post updates on our work during the summer.  In the meantime enjoy the article and video.

New Neopterygian Fishes from the Chinle Formation of Utah

This is an important new paper describing some new fishes from the Chinle Formation of Utah. Well-preserved fish are rare throughout much of the Chinle and relatively understudied in previous decades.  Nonetheless, they were important constituents of the Late Triassic biota, and much material goes unrecognized because many Chinle Formation workers (myself included) are one, unfamiliar with the fish fossil record, and two, the taxonomy of this group is in serious need of revision.  Sarah's new work and phylogenentic study is a huge step forward in rectifying these problems. We should all start paying more attention.

Gibson, S. Z. 2013. Biodiversity and Evolutionary History of Lophionotus (Neopterygii: Semionotiformes) from the Western United States. Copeia 2013:582-603. DOI: 10.1643/CI-12-028

Abstract - Two species of the neopterygian genus †Lophionotus Gibson, 2013, are described. Specimens of †Lophionotus chinleana, new species, were previously and recently collected from freshwater deposits in the Upper Triassic Chinle Formation of Lisbon Valley, southeastern Utah. †Semionotus kanabensis Schaeffer and Dunkle, 1950, from lacustrine deposits in the Lower Jurassic Moenave Formation of southwestern Utah, is herein redescribed and attributed to the genus †Lophionotus, based on shared characters, including the infraorbital in the posteroventral corner of the orbit being expanded and contacting the anterior ramus of the preoperculum. Both new species of †Lophionotus are distinct from †L. sanjuanensis Gibson, 2013, in that they lack a postcranial hump, deep body, dense tuberculation, and ventrally expanded preoperculum. The addition of two new species lends to a revised generic description of the genus †Lophionotus. A phylogenetic analysis infers a monophyletic †Lophionotus sister to the genus †Semionotus, and †Lophionotus is placed within the family †Semionotidae within †Semionotiformes.

Ice Archosauromorph


 Recent retreat of ancient ice sheets from western Virginia has revealed the frozen exquisitely preserved remains of a phytosaurian archosaur. The specimen appears to be of the fully crested type, similar to Nicrosaurus kapffi, previously only known from Germany. As the photos below demonstrate, even details of the soft tissue are preserved giving us amazing insight of this animal such as proportions, posture, and that it had bulgy eyeballs. 
 



 A close-up of the pes shows that digit four is the longest, supporting the hypothesis that the ichnoform Apatopus is indeed the track of phytosaurians.


Discoverers Michelle Stocker and Sterling Nesbitt are taking measurements and describing the new find before the Spring thaw, hopefully publishing the results soon.  In the meantime they are also eagerly awaiting what other rare forms may be exposed as these thick deposits of eastern ice finally retreat.

 




Triassic Period: Reptiles Rule. Video from the Discovery Channel.

I assume this is supposed to be the southwest U.S. during the Late Triassic, but there is a hodge-podge of animals from different ages. Still pretty cool though; however, I wish the aetosaur and photosaur were on the scene a little longer, and where is the ubiquitous Postosuchus?

http://www.discovery.com/video-topics/other/dinosaur-videos/triassic-period-reptiles-rule.htm

Large Body Size in Non-dinosaurian Dinosauromorphs - Evidence from a Large Silesaurid from Late Triassic of Tanzania

Barrett, P. M., Nesbitt, S. J., and B. R. Peecook. 2014. A large-bodied silesaurid from the Lifua Member of the Manda beds (Middle Triassic) of Tanzania and its implications for body-size evolution in Dinosauromorpha. Gondwana Research (accepted manuscript). http://dx.doi.org/10.1016/j.gr.2013.12.015

Abstract
- Many dinosaur lineages were characterised by wide ranges of body-size, ranging from taxa that were <1 m in length to the largest of all terrestrial vertebrates. On the other hand, the closest relatives of dinosaurs, the non-dinosaurian dinosauromorphs, such as Marasuchus and lagerpetids, were small-bodied animals with little variation in body-size. Here, we describe a partial femur of an unexpectedly large-bodied silesaurid (non-dinosaurian dinosauriform) from the Lifua Member of the Manda beds (?late Anisian) from southwestern Tanzania. This specimen (NHMUK R16303) is estimated to have had a femoral length of approximately 345 mm, which exceeds that of many Triassic and Lower Jurassic dinosaurs, and is either a large individual of the contemporary Asilisaurus kongwe or represents a new and otherwise unknown silesaurid taxon. In either case, it shows that body-size increases were more prevalent among early dinosauromorphs than realised previously. Moreover, silesaurid size increase occurred in parallel with that in early dinosaurs, alongside the convergent acquisition of other features related to locomotion and herbivory. However, Late Triassic faunas including large-bodied sauropodomorph and theropod dinosaurs lack similarly-sized non-dinosaurian dinosauromorphs, whereas the Lifua Member fauna includes both a large silesaurid and the early ?dinosaur Nyasasaurus, which overlapped in size.

New Open Access Paper Discussing the Rise of Dinosaurs

Benton, M.J., Forth, J., and M.C. Langer. 2014. Models for the rise of dinosaurs. Modern Biology 24:R87-R95. doi:10.1016/j.cub.2013.11.063

Abstract - Dinosaurs arose in the early Triassic in the aftermath of the greatest mass extinction ever and became hugely successful in the Mesozoic. Their initial diversification is a classic example of a large-scale macroevolutionary change. Diversifications at such deep-time scales can now be dissected, modelled and tested. New fossils suggest that dinosaurs originated early in the Middle Triassic, during the recovery of life from the devastating Permo-Triassic mass extinction. Improvements in stratigraphic dating and a new suite of morphometric and comparative evolutionary numerical methods now allow a forensic dissection of one of the greatest turnovers in the history of life. Such studies mark a move from the narrative to the analytical in macroevolutionary research, and they allow us to begin to answer the proposal of George Gaylord Simpson, to explore adaptive radiations using numerical methods.

The Foot of Poposaurus gracilis, Further Convergence with Theropod Dinosaurs

....and the answer to the question we've all been wondering...what type of footprint would Poposaurus have left? It appears that Poposaurus  probably could have left a Grallator-like track.

Farlow, J. O., Schachner, E. R., Sarrazin, J. C., Klein, H., and P. J. Currie. 2014. Pedal Proportions of Poposaurus gracilis: Convergence and Divergence in the Feet of Archosaurs. The Anatomical Record, Early View. DOI: 10.1002/ar.22863.

Abstract - The crocodile-line basal suchian Poposaurus gracilis had body proportions suggesting that it was an erect, bipedal form like many dinosaurs, prompting questions of whether its pedal proportions, and the shape of its footprint, would likewise “mimic” those of bipedal dinosaurs. We addressed these questions through a comparison of phalangeal, digital, and metatarsal proportions of Poposaurus with those of extinct and extant crocodile-line archosaurs, obligate or facultatively bipedal non-avian dinosaurs, and ground birds of several clades, as well as a comparison of the footprint reconstructed from the foot skeleton of Poposaurus with known early Mesozoic archosaurian ichnotaxa. Bivariate and multivariate analyses of phalangeal and digital dimensions showed numerous instances of convergence in pedal morphology among disparate archosaurian clades. Overall, the foot of Poposaurus is indeed more like that of bipedal dinosaurs than other archosaur groups, but is not exactly like the foot of any particular bipedal dinosaur clade. Poposaurus likely had a digitigrade stance, and its footprint shape could have resembled grallatorid ichnotaxa, unless digit I of the foot of Poposaurus commonly left an impression.

Bone Histology of Phytosaur, Aetosaur, and Other Archosauriform Osteoderms

Just in time for Christmas...

Scheyer, T. M., Desojo, J. B., and I. A. Cerda. 2013. Bone histology of phytosaur, aetosaur, and other archosauriform osteoderms (Eureptilia, Archosauromorpha). Anatomical Record (early view) DOI: 10.1002/ar.22849

Abstract -
As in other archosauriforms, phytosaurs and aetosaurs are characterized by the presence of well-developed osteoderms. Here we provide a comparative study on the microstructure of phytosaur (five taxa) and aetosaur (thirteen taxa) osteoderms. For outgroup comparison, we sampled osteoderms of the sister taxon to Aetosauria, Revueltosaurus callenderi, and the doswelliid Jaxtasuchus salomoni. Phytosaur, aetosaur, and Jaxtasuchus osteoderms are composed of a diploe structure, whereas the Revueltosaurus osteoderm microanatomy is more compact. The external cortex of phytosaurs, Revueltosaurus and Jaxtasuchus osteoderms is mainly composed of parallel-fibered bone. In aetosaurs, the external cortex mainly consists of lamellar bone, with lines of resorption within the primary bone indicating successive cycles of bone erosion and deposition. The basal cortex in all the specimens is composed of parallel-fibered bone, with the cancellous internal core being more strongly developed in aetosaurs than in phytosaurs. Woven or fibro-lamellar bone was recorded in both phytosaurian and aetosaurian taxa, as well as in Jaxtasuchus. Structural fibers, which at least partly suggest metaplastic origin, were only recorded in the internal core of two phytosaurs and in the
basal cortex of one aetosaur. Osteoderm thickness and cancellous to compact bone ratios appear to be subject to ontogenetic change. Minimum growth mark counts in osteoderms sampled indicate that some aetosaurs and phytosaurs lived for at least two decades. Bone microstructures are more uniform in phytosaur osteoderms and show a higher level of disparity among aetosaur osteoderms, and at least in the latter, histological features are potentially apomorphic for species/genus level.

Standardizing Triassic Stratigraphic Nomenclature in New Mexico

This is a new paper written by a group of geologists who are largely responsible for conducting much of the current geological mapping in New Mexico, and is an attempt to standardize the nomenclature used for Phanerozoic rocks especially the Triassic. Key recommendations regarding the Triassic rocks are abandonment of the Chinle as a Group and keeping it at the formation level, removal of the Dockum from the "Chinle Group" and reinstatement as the Dockum Group as traditionally used, and a suggestion where to divide strata between the Chinle and Dockum.  Consideration of the Chinle as a group and subsuming the Dockum has been controversial and never fully accepted since it was first proposed in the early 1990s. Thus, this paper suggests abandonment of much of the nomenclature proposed by Spencer Lucas and colleagues over the last couple of decades.

Cather, S. M., Zeigler, K. E., Mack, G. H., and S. A. Kelley. 2013. Toward standardization of Phanerozoic stratigraphic nomenclature in New Mexico. Rocky Mountain Geology 48:101-124. doi:10.2113/gsrocky.48.2.101
 
Abstract - Nomenclature for Phanerozoic strata in New Mexico has been rapidly evolving, but not all proposed changes have been widely accepted. From a perspective of geologic mapping, we evaluate some recent nomenclatural proposals for Pennsylvanian, Permian, Triassic, Jurassic, and Paleogene units. Because of the long shelf-life of geologic quadrangle maps and the desirability of minimizing nomenclatural diversity among them, we present guidelines with which we argue for a conservative approach to changes in stratigraphic nomenclature.

Redescription of "Paleorhinus" (Phytosauria) Specimens from Germany

Butler, R. J., Rauhut, O. W. M., Stocker, M. R., and R. Bronowicz. 2013. Redescription of the phytosaurs Paleorhinus (‘Francosuchus’) angustifrons and Ebrachosuchus neukami from Germany, with implications for Late Triassic biochronology. Zoological Journal of the Linnean Society Early View. DOI: 10.1111/zoj.12094

 
Abstract - Phytosaurs are a diverse and morphologically distinctive clade of superficially crocodile-like archosauriforms that had a near global distribution during the Late Triassic. Because their remains are among the most abundant vertebrate remains recovered in many Upper Triassic terrestrial formations, phytosaurs are used extensively in long-range biochronological and biostratigraphic correlations. The biochronologically oldest and earliest branching known phytosaurs include an array of nominal species from the early Late Triassic of the United States, Germany, Poland, Morocco, and India that have been synonymized within the genus Paleorhinus, and subsequently used to define a global ‘Paleorhinus biochron’. However, recent phylogenetic work suggested that the North American species previously referred to Paleorhinus are paraphyletic. Here, we reassess the systematics and anatomy of putative specimens of Paleorhinus from southern Germany. Two well-preserved basal phytosaur skulls from the Blasensandstein (Carnian) of Bavaria form the holotypes of Francosuchus angustifrons and Ebrachosuchus neukami, both of which were synonymized with Paleorhinus by previous workers. We demonstrate that Francosuchus angustifrons shares unique synapomorphies with specimens referred to Paleorhinus bransoni from the Late Triassic of Texas, and thus refer the species to Paleorhinus. By contrast, the longirostrine Ebrachosuchus is highly distinctive in morphology, and our new cladistic analysis of Phytosauria demonstrates that it represents a valid taxon that is more closely related to Phytosauridae than to Paleorhinus. We provide the first autapomorphy-based support for a monophyletic but restricted Paleorhinus (supported by a nodal row on the jugal, and low paired ridges on the squamosal) and confirm that previous broader conceptions of Paleorhinus are likely to be paraphyletic.